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Crystalline solids consisting of three-dimensional networks of interconnected

rigid units are ubiquitous amongst functional materials. In many cases,

application-critical properties are sensitive to rigid-unit rotations at low

temperature, high pressure or specific stoichiometry. The shared atoms that

connect rigid units impose severe constraints on any rotational degrees of

freedom, which must then be cooperative throughout the entire network.

Successful efforts to identify cooperative-rotational rigid-unit modes (RUMs) in

crystals have employed split-atom harmonic potentials, exhaustive testing of the

rotational symmetry modes allowed by group representation theory, and even

simple geometric considerations. This article presents a purely algebraic

approach to RUM identification wherein the conditions of connectedness are

used to construct a linear system of equations in the rotational symmetry-mode

amplitudes.

1. Introduction

There is an extensive literature exploring the structural effects

of cooperative ‘tilting’ or ‘rotation’ of interconnected rigid

units within crystalline compounds, most of which is

concerned with the case of rigid polyhedral units connected

within inorganic compounds or organic–inorganic hybrids.

One aim of the work is to determine what happens to the

structure, including a possible lowering of symmetry, when

cooperative rotations occur. Such rotations are important in

the silicates, in which the rotation of SiO4 tetrahedra plays a

role in the structural phase transitions from the high (�) to the

low (�) forms in quartz (see, for example, Heaney & Veblen,

1991), tridymite (Pryde & Dove, 1998) and cristobalite (Hatch

& Ghose, 1991). In perovskites, ABX3, the corner-linked BX6

octahedra form the framework, and the tilting of these octa-

hedra leads to phase transitions from the cubic to an assort-

ment of lower-symmetry structures – this system has received

perhaps more attention than the silicate one (Megaw, 1973;

Glazer, 1972; Aleksandrov, 1976; Woodward, 1997a,b; Howard

& Stokes, 2005, and references therein). In the event that the

BX6 octahedra are sufficiently large, the cavity may contain an

organic entity in place of the single cation A and an organic–

inorganic hybrid results. Such is the case for frameworks

comprising tin and lead iodides (Stoumpos et al., 2013; Whit-

field et al., 2016); notwithstanding the presence of this organic

entity, the structures are still largely determined by the tilting

of the BX6 octahedra in the framework. Spinels AB2O4 can be

viewed as three-dimensional networks of edge-sharing BO6

octahedra incorporating AO4 tetrahedra, and as such are
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expected to be less flexible than silicates or perovskites;

nevertheless tilting of the polyhedra may be possible (Talanov

& Shirokov, 2012).1 In the tungsten bronzes, MxWO3, the

frameworks are arrangements of corner-linked WO6 octa-

hedra, and thus are expected to be susceptible to octahedral

tilting. Possible tilted structures have been listed in recent

works (Smirnov & Saint-Grégoire, 2014; Whittle et al., 2015),

but it will be shown here that these lists are incomplete. The

present work was motivated in part by shortcomings noticed in

that previous work on the bronzes.

The tilting or rotation just described is driven by the usual

forces of chemistry. In the perovskites, for example, it is often

due to the cavity cation A being undersized. This situation can

be assessed from ionic radii using the Goldschmidt tolerance

factor (Goldschmidt, 1926), or perhaps more reliably from the

bond valence calculations available in the computer program

SPuDS (Lufaso & Woodward, 2001).

The structural phase transitions effected by cooperative

rotations are of rather more than esoteric interest. Such

transitions lead in the first instance to ‘spontaneous strain’

(Carpenter et al., 1998); associated with the transition from

high to low forms of quartz, for example, there is a non-

symmetry-breaking spontaneous strain below the transition,

resulting in a volume contraction up to 5%. There are, too,

significant anomalies in elastic constants (Carpenter & Salje,

1998) – documented anomalies (loc. cit.) include those at the

quartz transition, and at the cubic to-tetragonal transitions in

KMnF3 and SrTiO3 perovskites. Strains and elastic constants

in minerals such as quartz and the perovskites are of consid-

erable importance in the earth sciences, and in particular in

seismology. In the case of the ABX3 perovskites, tilting will

lead to a change in the B—X—B bond angle and it is thought

(see for example He et al., 2010) this may affect the electronic

band structure and the properties – optical, electrical and

magnetic – that depend on it. In some layered compounds,

such as hexagonal YMnO3, the Aurivillius phase SrBi2Ta2O9

and Ruddlesden–Popper Ca3Ti2O7, tilting leads to electric

polarization (Howard et al., 2013; Benedek et al., 2015): in

YMnO3 the tilting of corner-connected MnO6 octahedra

occurs simultaneously with and very probably drives displa-

cement of the Y3+ ions, whereas in the Aurivillius or

Ruddlesden–Popper phases the combination of tilting around

two different axes breaks the centre of symmetry and a

polarization perpendicular to both these axes develops. Irre-

spective of the physical effects of rigid-unit modes (RUMs) we

believe it critical that the structures they yield should be

understood as a basis for any detailed experimental or theo-

retical materials investigation.

Although the emphasis of this article will be on the struc-

tures resulting from the ‘freezing in’ of RUMs, it is noted that

in the higher-symmetry phases these same cooperative rota-

tions exist as low-frequency or ‘soft’ modes of vibration

(Giddy et al., 1993). In their dynamic manifestation, these

RUMs can be observed by inelastic neutron scattering as low-

frequency phonons. We cite, as two examples, the classic

observation of the soft-mode phonons in perovskite SrTiO3

just above the 110 K cubic to-tetragonal transition (Shirane &

Yamada, 1969), and a more recent study of cristobalite

showing an enhancement of low-frequency mode(s) in the

high-temperature form of cristobalite (Swainson & Dove,

1993). The dynamic versions of RUMs are also implicated in

many instances of negative thermal expansion (see the review

by Dove & Fang, 2016).

By rigid unit we understand a set of atoms within the crystal

structure that we might choose to rotate collectively without

altering any of the interatomic distances or angles within the

set, such as an organic molecule, macromolecule, molecular

complex or inorganic polyhedral unit. The rotational degrees

of freedom of an individual rigid unit are determined by the

site symmetry of the pivot point around which it rotates. When

two or more rigid units share an atom (or two atoms) in

common, the resulting need to cooperate in their motions

often reduces the overall rotational freedom of the individual

rigid units. The determination of the allowed patterns of

cooperative rotation is our present focus. In x2 we outline the

developed method and the manner in which it is applied, and

illustrate the method by detailing applications to an ortho-

rhombic perovskite and to quartz. We then focus on the

perovskite system in x3, the hexagonal tungsten bronzes in x4

and the tetragonal tungsten bronzes in x5.

2. The method

2.1. Glossary of abbreviations

RUM (rigid-unit mode). A global pattern of cooperative

rigid-unit rotations in a network of interconnected polyhedra.

We might have added a ‘C’ and another ‘R’ to the front of the

abbreviation to emphasize ‘cooperative’ and ‘rotational’, but

decided not to attempt to replace an abbreviation that’s

already common in the literature.

SADP (shared-atom displacement parameter). Any vector

component of the displacement of an atom shared by multiple

rigid units.

SUSA (symmetry-unique shared atom). A shared atom that

is also uniquely identified in the input to the present algorithm

as being the symmetry-unique representative for all other

symmetry-equivalent atoms in the crystal.

SUPA (symmetry-unique pivot atom). A rigid-body pivot

atom that is also uniquely identified in the input to the present

algorithm as being the symmetry-unique representative for all

other symmetry-equivalent pivot atoms in the crystal. It must

be connected to at least one shared atom to receive this

designation.

DCPA (directly connected pivot atom). For a given

symmetry-unique shared atom, this is a pivot atom that is

directly connected to or associated with that shared atom, not

merely in some symmetry-equivalent position far from the

shared atom. A DCPA need not be a SUPA, though it will

always be symmetry-equivalent to a SUPA.

research papers

Acta Cryst. (2018). A74, 408–424 Branton Campbell et al. � An algebraic approach to cooperative rotations 409

1 In this instance, rotation of one kind of polyhedron, e.g. tetrahedron, must be
accompanied by distortion of the other.



Irrep (irreducible representation). An irreducible matrix

representation of some mathematical symmetry group, speci-

fically of the crystallographic space group of the parent

structure. This is a set of matrices (one for each group

element) that obey the same multiplication table as the group

and which cannot simultaneously be brought to block-diag-

onal form by any similarity transform. For a given wavevector,

a space group has a finite number of irreps, each of which is a

sort of ‘recipe’ for composing symmetry-breaking order

parameters.

OPD (order-parameter direction). An abstract direction in

the carrier vector space of an irrep.

HTB (hexagonal tungsten bronze) and TTB (tetragonal

tungsten bronze). Well known structure types for tungsten

oxides of composition MxWO3.

2.2. Scope

Each rigid unit in the structure is assigned a pivot site

around which the rigid unit rotates if its rotation is permitted.

Each pivot site either hosts an actual atom or a dummy atom,

where ‘dummy’ implies an extra atom that has been artificially

inserted into the model. We will thus refer to ‘pivot’ atoms

without further qualification. Aside from the pivot atom, all

other atoms of a rigid unit are referred to as ‘passenger’ atoms.

In structures that possess interconnected rigid units, two or

more rigid units can share the same passenger atom, which we

refer to as a ‘shared’ atom.

The full scope of the present work is quite general. It

accommodates non-connected rigid units, clusters of inter-

connected rigid units, long-range networks (one-dimensional,

two-dimensional or three-dimensional) of interconnected

rigid units, or combinations of any of these scenarios. It can

accommodate multiple types of rigid units and rigid-unit

connections. It allows both one-point (e.g. polyhedral-corner)

sharing and two-point (e.g. polyhedral-edge) atom sharing

between rigid units; we do not explicitly preclude three-point

(e.g. polyhedral-face) atom sharing, though this effectively

welds the constituent rigid units into larger rigid units, which

might prevent any cooperative rigid-unit rotations in some

three-dimensional networks. It even allows more than two

rigid units to possess a common shared atom.

2.3. Algorithm

The algorithm is laid out herein as an eight-step procedure.

The reader might find it helpful to read, alongside this expo-

sition, x2.7, where the execution of these steps in the concrete

case of a Pnma perovskite can be followed.

Step 1. We start with a parent structure that can be

described in terms of one or more rigid units, in addition to

any other atoms present that are not contained within rigid

units. The parent is the structure for which RUMs are to be

identified. Choose a child symmetry group (i.e. a subgroup of

the symmetry group of the parent) that has sufficiently low

symmetry to accommodate any wavevectors and rotational

order parameters of interest. There is some art in the selection

of the child subgroup. Depending on the problem and our

specific intent, we may or may not need a supercell, and may

or may not choose the space group to be P1 within the selected

supercell. We might choose the child symmetry to be only low

enough to accommodate a specific order parameter at a

specific wavevector. Or it could prove more useful to lower the

symmetry far enough to accommodate the most general order

parameter permitted by that wavevector or by some set of

distinct wavevectors. In essence, the child selected defines the

scope of the subsequent analysis, and will enable both primary

and secondary rotational order parameters, all of which can be

explored simultaneously.

Any rigid unit that is capable of rotation on a specific site of

the child structure will be assumed to rotate about a pivot

atom that is centrally located within the rigid unit.

If the symmetry of the parent structure already permits

rigid-unit rotations, we simply define all of the rotational

angles to be zero in the parent. Any rotational changes relative

to the parent structure will subsequently be accounted as non-

zero. When it is possible to do so, we may want to manually

reverse any rigid-unit rotations observed in the parent, which

could result in a higher symmetry, and then study the rota-

tional parameters of this new high-symmetry parent instead.

Choosing a parent that already has non-zero RUMs, when we

could do otherwise, will not change the efficacy of the subse-

quent analysis, though it will generally result in a rotational

parameter set that is less elegant and less intuitive.

Step 2. Let index � run over the list of SUSAs that connect

rigid units together, and let the �th SUSA be located at x�. Let

the index � run over the list of SUPAs. Let index � run over

the list of pivot atoms that are directly connected to the �th

SUSA; we call them DCPAs. All DCPAs must be listed

separately, whether or not they are in the SUPA list, and

whether or not they are symmetry equivalent to one another.

Because there is a distinct � index for each SUSA, we could

instead express it as ��, but avoid doing so in order to keep the

notation simple. Let the �th DCPA of the SUSA at x� be

located at y0��; and let the SUPA to which it is symmetry

equivalent be located at y��. Let d0�� and d�� be the vectors

that describe the rigid-unit displacements of the pivot atoms

located, respectively, at y0�� and y��. Let r0�� and r�� be the

vectors2 that describe the rigid-unit rotations about the pivot

atoms located, respectively, at y0�� and y��. And let P�� and p��
be the point and shift components, respectively, of the

symmetry operator of the child space group that maps the

SUPA at y�� to the DCPA at y0��. Because y�� is the location of

a SUPA indexed by �, we could instead express it as y�ð��Þ, but

avoid doing so to keep the notation simple; the same applies to

the unprimed quantities d��, r��, P�� and p��.

The structural parameters of the DCPAs are related to

those of the corresponding SUPAs according to

y0�� ¼ P�� � y�� þ p��

d0�� ¼ P�� � d��

r0�� ¼ detðP��ÞP�� � r��: ð1Þ
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The inclusion of the determinant factor in the transformation

of the rotation vector reflects the fact that rotations are axial

vectors.

Step 3. Now we calculate the displacement u� of the SUSA

at x� due to the rotation of the DCPA at y0��. In the limit of

small rotation angles, the magnitude of this displacement is

simply the product of the rotation angle and the perpendicular

separation between the shared atom and the rotation axis,

which means that the displacement vector is just the cross

product of these rotation and separation vectors. And of

course, if the DCPA is displaced as well, the SUSA will follow.

The result for u� can be expressed in terms of the displace-

ments and rotations of either the DCPA at y0�� or the SUPA at

y��:

u� ¼ B�1 � fðB � r0��Þ � ½B � ðx� � y��0Þ�g þ d0��

¼ B�1 � ðfB � ½detðP��ÞP�� � r���g

� ½B � ðx� � P�� � y�� � p��Þ�Þ þ P�� � d��: ð2Þ

Here, B is the matrix whose columns are the Cartesian coor-

dinates of the basis vectors of the unit cell. All vector quan-

tities in equation (2) are presented in lattice coordinates

rather than Cartesian coordinates. Because the definition of

the cross product in a non-Cartesian coordinate system is

somewhat complicated, we instead use B to transform vector

quantities to Cartesian coordinates prior to taking a cross

product, and then use B�1 to transform the result back into

lattice coordinates. See Appendix A for a discussion of the

coordinate systems used to describe rotational vectors.

The linearity of equation (2) in the rotational components is

a feature key to the development of the present algorithm. By

assuming the small rotational-angle limit, we have essentially

linearized the RUM-search problem.

Step 4. The set of Npivot SUPAs has 3Npivot displacive vector

components and 3Npivot rotational vector components. From

these, collect all of the displacive and rotational vector

components that are both free and independent, and place

them in a single Nfree-dimensional vector called S. By free, we

mean that the component is allowed by the child space-group

symmetry to be non-zero. By independent, we mean that the

component is not dependent by symmetry on another

component of the same vector. For example, for a rotation

vector of the form ðrx; rx; 0Þ, only the first component is both

free and independent.

The set of Nshared SUSAs has 3Nshared displacive vector

components, which we refer to as SADPs. Place all of the

SADPs in a single 3Nshared-dimensional vector called U. In

contrast to S, we do not require the components of U to be

free or independent. Both S and U should be viewed as

containing variable parameters rather than numbers.

Step 5. For each possible pair ð�; �Þ, which is a unique

combination of a SUSA and a DCPA, apply equation (2) to

obtain a linear vector relationship in the components of U and

S with numerical coefficients. The expression for each vector

component of u� yields a linear equation; there will be three

separate equations for each distinct combination of � and �.

Let Neqs be the number of equations so generated. All toge-

ther, this system of equations can be expressed as

TU �U ¼ TS � S ð3Þ

where TU is an Neqs � 3Nshared numerical matrix and TS is an

Neqs � Nfree numerical matrix.

A given row of TU contains only one non-zero element

(which is equal to ‘1’), located in the column of the relevant

shared-atom displacement component. Because a shared atom

is by definition connected to multiple pivot atoms, each of its

components must appear in multiple equations, so that a given

column of TU will always contain more than one ‘1’; as a result,

every unique row of TU is duplicated at least once, which

structure is essential to the algorithm. Whenever identical

rows of TU have non-identical counterpart rows in TS, a shared

atom is tied to multiple pivot atoms that attempt to simulta-

neously move the shared atom in different directions. Toge-

ther, such rows comprise a constraint that restricts the allowed

rotational parameters. To violate such a constraint would be

akin to splitting the shared atom into fragments. This is the

primary insight that makes our algebraic approach to the

RUM-search problem possible!

Step 6. The vector S comprises what we call the ‘traditional’

parameter set for describing the rotations and displacements

of the individual rigid units in the structure. We will also use

the symmetry-mode parameter set, which consists of order

parameters of the irreps of the parent symmetry group. The

relationship between the two parameter sets is linear, meaning

that each traditional parameter can be expressed as a linear

combination of symmetry modes. And in fact, one can always

find a complete and orthogonal basis of symmetry modes for

the parameter space in question, a well known and quite

general result from group representation theory based on

Schur’s lemma (Bradley & Cracknell, 1972, section 1.3; Stokes,

2006; Campbell et al., 2006). The standard procedure for

calculating symmetry modes is to build a reducible repre-

sentation that describes the action of each parent symmetry

element on the traditional parameter set, to decompose it as a

direct sum of irreps, and then to use the method of projection

(Bradley & Cracknell, 1972, section 2.2) to identify linear

combinations of traditional parameters that transform as basis

functions of each contributing irrep. The process is straight-

forward; but in all but the simplest cases, one typically needs

computational tools to perform the projection.

Assign a variable amplitude to each relevant rotational and

displacive symmetry mode, and collect these parameters into

an Nfree-dimensional vector called A. If all secondary order

parameters are properly included, the conversion from tradi-

tional to symmetry-mode coordinates does not change the

number of independent parameters; the linear transformation

is invertible. We call the square invertible Nfree � Nfree matrix

that relates the two parameter sets TA, so that

S ¼ TA �A: ð4Þ

Next, combine equations (3) and (4), and move all terms to the

left-hand side of the equation to obtain
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TU �U� TS � TA �A ¼ 0: ð5Þ

This equation describes the linear relationship between the set

of SADPs and the set of rotational and displacive symmetry

modes. Note that an algebraic approach to determining the

RUMs of the child structure does not require the use of

symmetry-mode parameters. We employ symmetry modes

because (i) each symmetry mode has a well defined k vector in

the first Brillouin zone of reciprocal space, (ii) each symmetry

mode breaks the symmetry of the parent structure in a char-

acteristic and rather elegant way, and (iii) phase transitions in

crystals tend to activate a relatively sparse subset of the

available symmetry modes (rotational or otherwise).

Step 7. Place all of the parameters from U and A into a

single ð3Nshared þ NfreeÞ-dimensional vector called V ¼ fUjAg,

such that the SADPs of U are positioned before the

symmetry-mode parameters of A. Then construct an Neqs �

(3Nshared + NfreeÞ-dimensional matrix M = fTU j � TS � TAg,

such that the columns of TU are positioned before the columns

of �TS � TA. This allows us to rewrite equation (5) as

M � V ¼ 0: ð6Þ

The solution space of this homogeneous system of Neqs linear

equations in 3Nshared þ Nfree parameters will contain all

allowed RUMs.

Step 8. Reduce the matrix M of coefficients to reduced-row-

echelon form, wherein the first non-zero element in each non-

zero row is a 1 (referred to as a ‘row-leading 1’) and each

column containing a row-leading 1 has no other non-zero

elements. Such a reduction is always possible and leads to a

unique result (theorem #1 in Lay, 1997). Call the new matrix

Mrre, so that we now arrive at

Mrre � V ¼ 0: ð7Þ

Because equations (6) and (7) share the same solution space,

the simplified form Mrre allows us to quickly identify the

independent symmetry modes of the original set of equations

and to show how each of the SADPs depends on these inde-

pendent modes.

Because a SADP always depends on something else (i.e.

pivot-atom rotational and displacive symmetry-mode para-

meters), the corresponding column in the Mrre must contain a

row-leading 1; if the row-leading 1 is alone (i.e. the only non-

zero value) on its row, the SADP must from equation (7) be

identically zero; otherwise it will depend on the symmetry

modes indicated by the columns of the other non-zero

elements on its row. Due to our construction of the problem,

one SADP cannot depend on other SADPs – this ensures that

no row can have non-zero values in more than one SADP

column. The columns of the symmetry-mode parameters are

more interesting. A symmetry mode whose column contains a

row-leading 1 that is also alone in its own row must be iden-

tically zero; the shared-atom constraints forbid its activation.

A symmetry mode whose column contains a row-leading 1

that is not alone in its own row is not prevented by the shared-

atom constraints, but depends on other symmetry modes

rather than being independent. A symmetry mode whose

column contains non-zero terms other than a row-leading 1 is

allowed and also independent, the specific values showing how

the mode affects the various other symmetry modes and

shared-atom displacements that depend on it.

2.4. Quasi-RUMs

The independent rotational symmetry modes identified

using the above algorithm are ‘pure’ in the sense that an

infinitesimal rotation amplitude requires no internal distor-

tions of the affected rigid units.3 However, the application of a

finite rather than infinitesimal amplitude to a pure RUM will

inevitably lead to rigid-unit distortions. Though we do not

allow the cell parameters to relax in the present work, this

would often be true even if we allowed cell-parameter

relaxation. Once a distortion-inducing finite-amplitude RUM

has already been applied, any attempt to further adjust the

amplitude (whether an increase or a decrease) will further

change the current rigid-unit geometries. In such a situation,

what was once a pure RUM is now inexact, so that attempts to

detect it from equations (6)–(7) using the already distorted

structure as a starting point will fail. Yet, this inexact RUM is

still clearly of interest to us and ought to be detectable by

some approximate means. Following other literature (Withers

et al., 2002), we will refer to such modes as ‘quasi-RUMs’.

Some crystalline materials have fundamental geometric

constraints such that even their most idealized forms have

slightly irregular rigid units, precluding the existence of pure

RUMs, but admitting quasi-RUMs. One rather simplistic

solution for detecting quasi-RUMs is described in the next

subsection.

2.5. Technical details

ISOTROPY is the original software program in what is now

referred to as the ISOTROPY software suite (http://

iso.byu.edu/iso/isotropy.php). The ISODISTORT program

(Campbell et al., 2006) extends the capabilities of the

ISOTROPY program to include new order-parameter types,

symmetry-mode search types, incommensurate wavevector

and symmetry groups, and many output options. Among other

things, ISODISTORT can be used to fully parameterize a

child structure in terms of the symmetry modes of the

various irreps of the parent symmetry, using only irreps

that actually contribute order parameters to the child struc-

ture. The ISOSUBGROUP program (Stokes et al., 2016) is a

relatively new addition to the ISOTROPY suite; it allows one

to conveniently list all of the irreps and OPDs of a given

parent symmetry group, independent of any specific order-

parameter type (e.g. displacive, magnetic, rotational etc.). All

three of these software packages are either used or discussed

below.

The ability to compute the symmetry modes of rotational

(axial vector) order parameters is a newly implemented

feature of ISODISTORT that has not been presented in past
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literature. The treatment of rotational moments is perfectly

analogous to that of magnetic moments, except that static

rotations enjoy greater simplicity due to the avoidance of

time-reversal operations and magnetic space groups. Upon

uploading the parent structure into ISODISTORT, one selects

the order-parameter types of interest separately for each

chemical element; all atoms of a given element type share a

selection. Choose displacive (if needed) and rotational order

parameters for each type of pivot atom; but do not select

anything for non-pivot atoms. If the atoms of a given

chemical element include both pivot and non-pivot atoms, one

must artificially change the non-pivot atoms to a different

element type in the parent structure before uploading it. This

ensures that all order parameters belong exclusively to pivot

atoms.

The low-symmetry child structure can be generated in

ISODISTORT using any one of its standard methods. Then

leave all symmetry modes at their default-zero amplitudes,

and export the child structure to a CIF file. This file contains a

standard description of the undistorted child structure, a list of

the Nfree free and independent traditional child-structure

parameters comprising the vector S, a list of the Nfree

symmetry-mode parameters comprising the vector A, and the

numerical matrix TA.

Though the vectors S and A have been defined to include

both the rotational and displacive degrees of freedom of the

pivot atoms, it is often the case that pivot-atom displacements

are not relevant to the RUMs available to a structure. The

high (�) to the low (�) transition of quartz is a notable

counterexample, in which tetrahedral SiO2 rotations and

displacements must be activated cooperatively in order for the

rotations to occur at all. But for other cases of interest in the

present work, such as perovskite and tungsten-bronze tilt

systems, pivot-atom displacements proved to be unnecessary

(i.e. no rotational modes depended on them) during our initial

explorations, and were therefore omitted from the analysis

presented here (i.e. not included in S or A).

The Mathematica programming language and environment

was used to prepare the code that constructs equations (1)–

(7). This code uses an ISODISTORT-generated CIF file

containing the symmetry-mode description of the child

structure as input.

Mathematica’s built-in RowReduce function was applied to

the matrix M in equation (6) to obtain the matrix Mrre in

equation (7). Numerical row reduction naturally requires a

tolerance in order to distinguish zero and non-zero values.

Numbers with absolute values smaller than the tolerance get

set to zero at potential pivot4 positions during the calculation,

which accommodates round-off errors and inherent uncer-

tainty in the initial matrix components.

To detect quasi-RUM modes, which do not quite satisfy

equations (6)–(7), but which result in a small discrepancy

vector n ¼ M � V, one can simply raise the row-reduction

tolerance well above the levels normally needed to accom-

modate round-off errors and input uncertainties. Of course,

when the tolerance grows too large, false solutions of no

interest may also be detected. When raising the tolerance to

include potential quasi-RUMs, one should scrutinize each

detected mode to ensure that it is meaningful.

2.6. Mode superposition

For a structure that allows multiple independent RUMs, it is

important to appreciate that any arbitrary superposition of

independent RUMs is also a valid RUM (still maintaining the

assumption of infinitesimal mode amplitudes). To see that this

must be true, consider that every equivalent domain of a

RUM-generating OPD must also produce a RUM, and that

the equivalent domains of even the simplest OPD, taken

together, span the carrier space of an irrep. Thus, we can

choose N independent basis RUMs to form the basis of an N-

dimensional vector space of RUMs. Though one could do

otherwise, in principle, we will always choose each basis RUM

of the child structure to belong to a specific irrep of the parent

rather than allowing a basis RUM to mix contributions from

multiple irreps.

A multi-dimensional irrep is capable of contributing a

number of independent RUMs less than or equal to its

dimensionality. In this case, the basis RUMs will be defined as

those corresponding to OPDs with just a single non-zero

component. Consider a two-dimensional irrep for which the

ða; 0Þ and ð0; aÞ OPDs each provide one basis RUM to the

child. Because the general ða; bÞ OPD of the same irrep is a

linear combination of its two basis OPDs, it will correspond to

a RUM with two free parameters.

The OPD (a, a) has multiple non-zero components but only

one independent or free parameter. The OPDs (and the

corresponding RUMs) having only one free parameter are

referred to here as ‘simple’. A complete set of independent

(and possibly non-orthogonal) RUMs based on simple OPDs

do in fact provide an alternative basis for the vector space of

all possible RUMs. But in the present context, we will refer to

them as ‘simple’ RUMs so that we can reserve the term ‘basis’

for the RUMs corresponding to a single non-zero OPD

component; it is clear from these definitions that all ‘basis’

RUMs are ‘simple’, but that some simple RUMs may not be

basis RUMs.

Suppose that the simple ða; aÞ OPD results in an inter-

mediate subgroup symmetry that is both lower than the parent

symmetry and higher than the child symmetry. If this happens

and also proves interesting, one can consider redefining the

child structure to have this intermediate symmetry, so that the

resulting rotational analysis will yield only a single RUM –

that arising from the simple ða; aÞOPD. The existing literature

favours this approach of separately exploring the RUMs

available to each intermediate subgroup that can be achieved

with an irrep rather than merely identifying the basis RUMs

available to the irrep’s lowest-possible subgroup – that of the

general OPD. And in fact, one often finds that these inter-

mediate subgroups correspond to real phases of a material.

The examples described below will illustrate this concept.
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4 The word ‘pivot’ as used here is a technical term used in row reduction, and
does not here refer to the ‘pivot atom’ in a rigid unit.



2.7. Pnma perovskite example

For a simple but interesting example we return to the

perovskites. The ideal perovskite is cubic in space group

Pm�33m. However, as indicated in our introductory remarks,

perovskites are susceptible to symmetry lowering by rotation

(tilting) of the BX6 octahedra (RUMs), and are found most

frequently in space group Pnma (Lufaso & Woodward, 2001),

on a 21=2 � 2� 21=2 supercell relative to the cubic parent. The

Pnma structure involves two different types of BX6 rotations.

As our specific example, we take the well known room-

temperature structure of LaMnO3 (Rodrı́guez-Carvajal et al.,

1998). For the parent structure, we used a cubic perovskite

with cell parameter a = 4.0 Å. We then generated an undis-

torted child structure by artificially lowering the symmetry of

the parent from cubic to orthorhombic without varying any of

the new structural parameters available to the orthorhombic

phase. The cell parameters and atomic coordinates for the

idealized cubic, the undistorted child, and the experimentally

determined structures are listed in Table 1.

The only SUPA is the Mn atom, which is located at Wyckoff

site ð0; 0; 0Þ; based on the �11 point symmetry of this site, all

three components of the Mn-atom rotation vector rMn = (rMn;x,

rMn;y, rMn;z) are permitted to be non-zero. O atoms O1 and O2

are SUSAs. The two Mn pivot atoms connected to shared

oxygen O1 are located at y0O1;1 = (0.5, 0, 0.5) and y0O1;2 =

(0.5, 0.5, 0.5) and have rotation vectors r0O1;1 = (�rMn;x, �rMn;y,

rMn;z) and r0O1;2 = (rMn;x, �rMn;y, �rMn;z), while the two Mn

pivot atoms connected to shared oxygen O2 are located at

y0O2;1 = (0, 0, 0) and y0O2;2 = (0.5, 0, 0.5) and have rotation

vectors r0O2;1 = (rMn;x, rMn;y, rMn;z) and r0O2;2 = (�rMn;x, �rMn;y,

rMn;z). These rotations were determined by noting that all of

the Mn DCPAs are symmetry equivalent to the Mn SUPA at

the origin, so that yO1;1 = yO1;2 = yO2;1 = yO2;2 = (0, 0, 0). The

corresponding symmetry operators are PO1;1 = PO2;2 = �xx, �yy, z,

PO2;1 = x, y, z and PO1;2 = �xx, y, z, only the last of which

has a negative determinant. Applying these operators

to rMn produces the respective rotations at y0O1;1, y0O1;2, y0O2;1

and y0O2;2.

With two pivot atoms per shared atom, equation (2) yields

two equations for each of the six SADPs: uO1;x =�2rMn;z, uO1;y

= 0, uO1;z = �2rMn;x, uO1;x = �2rMn;z, uO1;y = 0, uO1;z = �2rMn;x,

uO2;x = 2rMn;y, uO2;y = �rMn;x + rMn;z, uO2;z = �2rMn;y, uO2;x =

2rMn;y, uO2;y = �rMn;x � rMn;z, uO2;z = �2rMn;y, where we have

employed the parent (ap = 4 Å) and child (a = c = 21=2ap,

b = 2ap) cell-edge lengths. Recall that the displacements

(unitless) and rotations (radians/Å) are both presented in

lattice coordinates, so that their relationship involves the

child-structure cell parameters a, b and c (see Appendix A for

more information on rotation-vector components).

Using ISODISTORT, we find that there are three

rotational symmetry modes that contribute to the

allowed traditional rotational degrees of freedom. To each, we

assign a variable amplitude: A1 = ½12 ;
1
2 ;

1
2�R
þ
4 ða;�a; 0Þ, A2 =

½0; 1
2 ; 0�Xþ5 ða; a; 0; 0; 0; 0Þ and A3 = ½12 ;

1
2 ; 0�Mþ3 ð0; a; 0Þ, where

the three parts of each name indicate a reciprocal-space k

vector, an irrep of the parent symmetry group (Pm�33m) at that

k vector and a specific OPD of that irrep.5 We place these

three rotational symmetry-mode amplitudes together in the

vector A ¼ ðA1;A2;A3Þ. The four unnormalized Mn-atom

rotation vectors projected for each symmetry mode are as

follows:

Mn atom A1ðR
þ
4 Þ A2ðX

þ
5 Þ A3ðM

þ
3 Þ

ðxyzÞ ðrxryrzÞ ðrxryrzÞ ðrxryrzÞ

ð000Þ ð�1100Þ ð001Þ ð010Þ

ð0 1
2 0Þ ð100Þ ð00�11Þ ð010Þ

ð12 0 1
2Þ ð100Þ ð001Þ ð0�110Þ

ð12
1
2

1
2Þ ð�1100Þ ð00�11Þ ð0�110Þ

From these mode patterns, we can see that rMn;x / �A1,

rMn;z / A2 and rMn;y / A3. ISODISTORT further normalizes

each mode so that the squared amplitude is the sum of the

squares of the magnitudes of the affected rotational moments

in the supercell. Consider the first (Rþ4 ) mode, where each of

the four Mn moments in the supercell either points parallel or

antiparallel to 100 and has magnitude jBðrMn;x; 0; 0Þj = ajrMn;xj,

so that A2
1 = 4a2jrMn;xj

2 and rMn;x = �ð1=2aÞA1 = �ð21=2=16ÞA1.

The normalization of the other two modes likewise yields rMn;z

= ð1=2cÞA2 = ð21=2=16ÞA2 and rMn;y = ð1=2bÞA3 = ð1=16ÞA3.

After defining the S and U vectors as S1 = rMn;x, S2 = rMn;y, S3 =

rMn;z, U1 = uO1;x, U2 = uO1;y, U3 = uO1;z, U4 = uO2;x, U5 = uO2;y

and U6 = uO2;z, we construct the matrices

TU ¼

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0
BBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCA

;TS ¼

0 0 �2

0 0 0

�2 0 0

0 0 �2

0 0 0

�2 0 0

0 2 0

�1 0 1

0 �2 0

0 2 0

�1 0 �1

0 �2 0

0
BBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCA

;

TA ¼

�21=2

16 0 0

0 0 1
16

0 21=2

16 0

0
@

1
A;
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5 Because the child symmetry group is a subgroup of index 24 in Pm�33m, there
are 24 domains to choose from. The choice of domain affects the forms of the
OPDs and the details of the matrices TS and TA, and is arbitrary. When
ISODISTORT’s ‘General Method’ (Method 2) is employed, the ‘domains’
output feature can be used to obtain a list of the OPDs corresponding to each
of the domains. The domain employed in the present example was arrived at
via the decomposition (Method 4) of the child structure presented above.



M ¼

1 0 0 0 0 0 0 21=2=8 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 �21=2=8 0 0

1 0 0 0 0 0 0 21=2=8 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 �21=2=8 0 0

0 0 0 1 0 0 0 0 �1=8

0 0 0 0 1 0 �21=2=16 �21=2=16 0

0 0 0 0 0 1 0 0 1=8

0 0 0 1 0 0 0 0 �1=8

0 0 0 0 1 0 �21=2=16 21=2=16 0

0 0 0 0 0 1 0 0 1=8

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

and

Mrre ¼

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 �21=2=8 0 0

0 0 0 1 0 0 0 0 �1=8

0 0 0 0 1 0 �21=2=16 0 0

0 0 0 0 0 1 0 0 1=8

0 0 0 0 0 0 0 1 0

0
BBBBBBBB@

1
CCCCCCCCA
:

The matrix M has four pairs of identical rows. The duplicate

rows are eliminated during row reduction. To identify the

critical features of the system of equations, look for non-

identical rows in M that have their row-leading 1’s in the same

column; these are rows #8 and #11 in the present example.

Adding these two rows and normalizing to the first element

yields row #5 of Mrre; subtracting one from the other and

normalizing yields row #7 of Mrre. The all-zero rows of Mrre

have been omitted. Solving Mrre � V ¼ 0 in equation (7) gives

us uO1;x ¼ 0, uO1;y ¼ 0, uO1;z ¼ 21=2=8A1, uO2;x ¼ 1=8A3,

uO2;y ¼ 21=2=16A1, uO2;z ¼ �1=8A3 and A2 ¼ 0; these equa-

tions comprise a complete description of the allowed RUMs.

The only column of Mrre that corresponds to a symmetry mode

and also has a row-leading 1 alone on its own row is that

corresponding to A2ðX
þ
5 Þ; thus this mode is prevented; its

action splits the shared O1 atom in different directions along

the orthorhombic y axis.

The Mrre columns corresponding to symmetry modes

A1ðR
þ
4 Þ and A3ðM

þ
3 Þ have non-zero terms other than a row-

leading 1, so that these modes are the independent parameters

upon which all shared-atom displacements depend. Because

there are no dependent symmetry modes, we can say simply

that the Rþ4 and Mþ3 modes are the only RUMs available to the

child structure. In fact, even if we further lower the child

symmetry to space group P1, no additional RUMs are found.

Acting alone as a single mode, Rþ4 produces the well known

a0b�b� octahedral tilt pattern (Glazer notation; Glazer, 1972)

with space-group Imma (#74), and Mþ3 produces the well

known a0a0cþ tilt pattern with space group P4/mbm (#127).

Because the superposition of two or more RUMs is also a valid

RUM, we are not surprised to find that Rþ4 and Mþ3 can coexist

to produce the valid tilt pattern aþb�b� with space group

Pnma (#62). This is true regardless of the relative sizes of the

two mode amplitudes.

If we choose instead the already distorted structure as the

parent, which possesses significant octahedral rotations, we do

not expect that any RUMs of interest will be pure. In this case,

the matrix M is calculated to be

M ¼

1 0 0 0 0 0 0 0:16376 0:03451

0 1 0 0 0 0 �0:02724 �0:00461 0

0 0 1 0 0 0 �0:17646 0 0:00629

1 0 0 0 0 0 0 0:16376 0:03451

0 1 0 0 0 0 0:02724 0:00461 0

0 0 1 0 0 0 �0:17646 0 0:00629

0 0 0 1 0 0 0 0:02515 �0:10449

0 0 0 0 1 0 �0:08248 �0:11210 0

0 0 0 0 0 1 0:02710 0 0:15302

0 0 0 1 0 0 0 0:02515 �0:12710

0 0 0 0 1 0 �0:10033 0:07071 0

0 0 0 0 0 1 �0:02710 0 0:09653

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

:

Using a reasonably small row-reduction tolerance of 0.01, Mrre

computes to the identity matrix after all non-zero rows are

omitted. In other words, equations (6)–(7) have no non-trivial

solution. However, if we increase the tolerance to 0.06, we

instead obtain

Mrre ¼

1 0 0 0 0 0 0 0 0:03451

0 1 0 0 0 0 �0:02724 0 0

0 0 1 0 0 0 �0:17646 0 0:00629

0 0 0 1 0 0 0 0 �0:10449

0 0 0 0 1 0 �0:08248 0 0

0 0 0 0 0 1 0:02710 0 0:15302

0 0 0 0 0 0 0 1 0

0
BBBBBBBB@

1
CCCCCCCCA
:

This result is very similar to that of the undistorted case,

except for small differences of about 0.035 in the symmetry-

mode columns. If the matrix terms smaller than tolerance are

eliminated, the resemblance to the undistorted case is clearer,

though the remaining terms still exhibit differences of similar

magnitude:
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Table 1
Structural data for an idealized parent cubic perovskite and a simple
21=2 � 2� 21=2 perovskite distortion of LaMnO3 in space group Pnma
(Rodrı́guez-Carvajal et al., 1998).

Parent: Pm�33m (#221), a = b = c = 4.00000 Å
La 4b 0.50000 0.50000 0.50000
Mn 4a 0.00000 0.00000 0.00000 pivot
O 4d 0.50000 0.00000 0.00000 shared

Undistorted child: Pnma (#62), a = 5.65685, b = 8.00000, c = 5.65685 Å
La 4c 0.00000 0.25000 0.50000
Mn 4a 0.00000 0.00000 0.00000 pivot
O1 4c 0.50000 0.25000 0.50000 shared
O2 8d 0.25000 0.00000 0.25000 shared

Distorted child: Pnma (#62): a = 5.74731, b = 7.69287, c = 5.53667 Å
La 4c 0.04900 0.25000 0.49220
Mn 4a 0.00000 0.00000 0.00000 pivot
O1 4c 0.48740 0.25000 0.57450 shared
O2 8d 0.30660 0.03840 0.22560 shared



Mrre ¼

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 �0:17646 0 0

0 0 0 1 0 0 0 0 �0:10449

0 0 0 0 1 0 �0:08248 0 0

0 0 0 0 0 1 0 0 0:15302

0 0 0 0 0 0 0 1 0

0
BBBBBBBB@

1
CCCCCCCCA
:

2.8. Quartz example

Another interesting example is the high (�) to the low (�)

phase transition in quartz. Both structures have corner-sharing

networks of SiO2 tetrahedra on the same framework topology,

and also the same unit cell (to within lattice strains), which

contains three SiO2 tetrahedra. But the trigonal space group

of the � phase (P3221) is a subgroup of the hexagonal space

group (P6222) of the � phase, so that � can be viewed as

slightly distorted relative to �. The child structure has two

more displacive degrees of freedom than the parent. The two

extra parameters can be described in terms of a tetrahedral

rigid-unit rotation and translation, one of which must depend

on the other in order to act cooperatively as a RUM. We list

the cell parameters and atomic coordinates of both phases in

Table 2.

The two Si pivot atoms connected to the shared oxygen are

located at yO;1 ¼ ð0:5; 0; 0:66667Þ and yO;2 ¼ ð0:5; 0:5; 1:0Þ.
By symmetry, they have rotation vectors rO;1 ¼ ðrSi; 0; 0Þ

and rO;2 ¼ ð�rSi;�rSi; 0Þ, as well as displacement vectors

dO;1 ¼ ðdSi; 0; 0Þ and dO;2 ¼ ð�dSi;�dSi; 0Þ. The vector

S ¼ ðrSi; dSiÞ contains the two free and independent rotation

and displacement vector components. And the vector A

contains the corresponding rotational symmetry mode A1½rot�

and displacive symmetry mode A2½dis�, both of which are

associated with the one-dimensional gamma-point irrep

½0; 0; 0��3.

With two pivots for the one shared atom, equation (2) yields

two equations for each of the three SADPs, for a total of six

equations, so that the matrix TU has two copies of each row as

expected. Because rotational and displacive symmetry modes

cannot mix within TA, it has a block-diagonal form, though the

simplicity of having only one mode in each block results in

something proportional to a 2� 2 identity matrix. The matrix

B in this case is not diagonal, but otherwise the computation

proceeds just as for the perovskite. The relevant matrices are

computed to be

TU ¼

1 0 0

0 1 0

0 0 1

1 0 0

0 1 0

0 0 1

0
BBBBBBBB@

1
CCCCCCCCA
;TS ¼

�0:52538 1

�1:05075 0

0:82084 0

0:52542 �1

�0:52542 �1

0:82084 0

0
BBBBBBBB@

1
CCCCCCCCA
;

TA ¼
0:11552 0

0 0:11552

� �

M ¼

1 0 0 0:06069 �0:11552

0 1 0 0:12138 0

0 0 1 �0:09482 0

1 0 0 �0:06070 0:11552

0 1 0 0:06070 0:11552

0 0 1 �0:09482 0

0
BBBBBB@

1
CCCCCCA

and

Mrre ¼

1 0 0 0 0

0 1 0 0 0:23103

0 0 1 0 �0:18048

0 0 0 1 �1:90332

0
BB@

1
CCA;

where 0.11552 represents 1=ð31=2aÞ and thus depends on the

cell parameter a. Because the RUM is pure, a small row-

reduction tolerance (2� 10�5) is sufficient for detecting it. In

reduced-row-echelon form, the last row reveals that the

rotational and displacive symmetry modes are both allowed to

be non-zero, but that one depends on the other according to

the relation A1½rot� ¼(1.90332 rad/Å)A2½dis� or its inverse rela-

tion A2½dis� = (0.52540 Å/rad)A1½rot�, where the displacement

amplitude is presented in Å units and the rotation amplitude is

presented in radian units. These two degrees of freedom

combine to form a single RUM! Because equation (4) implies

that rSi ¼ 0:11552A1½rot� and dSi ¼ 0:11552A2½dis�, we also have

rSi = (1.90332 rad/Å)dSi. The forms of rO;1 and dO;1 above then

make it clear that the rotation and displacement have the same

sense (either both positive or both negative). Thus, the rigid

rotation and displacement of the SiO2 tetrahedron are parallel

rather than antiparallel – they twist and slide in the same

direction. The ability of the new algebraic approach to detect

rotational–displacive interdependencies was the motivation

for highlighting this well known distortion.

3. Perovskites

Howard & Stokes (1998) made use of the computer program

ISOTROPY to identify structures arising from the cooperative

rotation (tilting) of the corner-sharing BX6 octahedra in ABX3

perovskites. In this section we show that the algebraic

approach developed in this article reproduces their results.
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Table 2
Structural data for �-quartz (Le Page & Donnay, 1976) and �-quartz
(Wright & Lehmann, 1981).

For �-quartz, note that we use the modern unit-cell origin of space group #154,
which is shifted by (0, 0, 1/6) relative to that of Le Page & Donnay. Observe
that adding (0, 0, 1/3) to the atomic positions of the child (�) structure places
them near to the corresponding positions in the parent (�) structure.

Parent: P6222 (#180), a = b = 4.99770, c = 5.46010 Å
Si 3c 0.50000 0.00000 0.00000 pivot
O 6j 0.41440 0.20720 0.16667 shared

Undistorted child: P3221 (#154), a = b = 4.99770, c = 5.46010 Å
Si 3a 0.50000 0.00000 0.66667 pivot
O 6c 0.41440 0.20720 0.83333 shared

Distorted child: P3221 (#154), a = b = 4.91340, c = 5.40520 Å
Si 3a 0.46990 0.00000 0.66667 pivot
O 6c 0.41410 0.26810 0.78550 shared



As previously mentioned, the parent cubic perovskite

structure has space group Pm�33m (#221) and has a single B site.

The special k vectors of the first Brillouin zone of the parent

lattice are �ð0; 0; 0Þ; Xð12 ; 0; 0Þ; Mð12 ;
1
2 ; 0Þ and Rð12 ;

1
2 ;

1
2Þ. The

Howard & Stokes study was not extended to k vectors on lines

or planes of symmetry. Howard & Stokes used ISOTROPY to

determine that the only irreps at the special points able to

contribute rotational distortions at the B sites, with their most

general OPDs, were �þ4 ða; b; cÞ, Rþ4 ða; b; cÞ, Xþ3 ða; b; cÞ,

Xþ5 ða; b; c; d; e; f Þ, Mþ3 ða; b; cÞ and Mþ5 ða; b; c; d; e; f Þ. The

same results can now be found using ISODISTORT, first

setting the program to consider only rotational distortions at

the B site, searching over the special k points in turn, then

using the drop-down menu available after this search to find

and list the contributing irreps.

Howard & Stokes (1998) were able to proceed by manual

inspection of the different irreps, thanks to the cubic symmetry

of the parent perovskite along with the simplifying fact that

the passenger X atoms are located midway between pivot

atoms B. This meant that only the directions of tilt axes along

with the signs of the tilts needed to be considered. It was

concluded that only irreps Mþ3 and Rþ4 would contribute to

tilting.

For the algebraic approach, we find using ISODISTORT

that the lowest-symmetry subgroup that combines all of the

rotational B-site order parameters of all of the irreps listed

above has space group P�11, a 2� 2� 2 supercell and a ð0; 0; 0Þ

origin shift relative to the cubic parent. We define this to be

the undistorted child structure.

Counting up the dimensions of these rotation-capable

irreps, we see that the child structure has Nfree = 3 + 3 + 3 + 6 +

3 + 6 = 24 rotational symmetry modes, which is as expected

for a triclinic supercell with Npivot ¼ 8 B-site SUPAs and

three rotational vector components each. The supercell has

Nshared ¼ 12 X-site SUSAs with two DCPAs each. This then

yields Neqs ¼ 3Nshared � 2 ¼ 72 equations in 3Nshared þ Nfree =

60 parameters. The 72� 60 matrices M and Mrre are too large

to display conveniently for this case. But their consequences

are simple. (i) Only the Rþ4 and Mþ3 irreps contribute viable

RUMs;6 shared-atom constraints forbid the others. (ii) These

two three-dimensional irreps contribute one order parameter

each, and do so with their most general OPD, so that a total of

3þ 3 ¼ 6 basis RUMs define the vector space of all possible

RUMs. (iii) None of the allowed rotational symmetry modes

depend on other symmetry modes; each rotational symmetry

mode is either independent or forbidden.

It can be seen that the algebraic approach identifies exactly

the same irreps for rotational distortions as were found by

Howard & Stokes (1998). This being the case, the enumeration

of the isotropy subgroups and the corresponding possible

structures must be the same: there are four tilt patterns arising

from irrep Mþ3 , six tilt patterns from Rþ4 , and 14 from the

combined action of Mþ3 and Rþ4 . Of these last 14, Howard &

Stokes (1998) rejected ten tilt patterns that involved ‘in-phase’

Mþ3 and ‘out-of-phase’ Rþ4 tilts around the same axis. In this

they were following Glazer (1972), who suggested that tilts in

successive layers of the perovskite structure should be equal in

magnitude to avoid dimensional mismatch between these

layers,7 even though they might differ in sense. Whether or not

we choose to cull the tilt patterns in this way, we see that our

new algebraic approach to RUM identification and char-

acterization is consistent with the seminal work of Howard &

Stokes.

4. Hexagonal tungsten bronzes

The ideal hexagonal tungsten bronze (HTB) has stoichiometry

M1/3WO3 and space-group symmetry P6=mmm (#191). The

structure comprises layers of corner-sharing WO6 octahedra in

both hexagonal and triangular arrangements (Fig. 1); the

parent unit cell contains three W atoms on the Wyckoff 3f

sites.

Here we classify and characterize the RUMs of the corner-

sharing WO6 octahedra of an HTB involving only special k

vectors. The special k vectors of the first Brillouin zone of the

parent lattice are �ð0; 0; 0Þ; Að0; 0; 1
2Þ, Hð13 ;

1
3 ;

1
2Þ, Kð13 ;

1
3 ; 0Þ,

Lð12 ; 0; 1
2Þ and Mð12 ; 0; 0Þ. Of the 60 irreps defined at these k

vectors it is found, using ISODISTORT in the manner

described in the previous section, that 42 are capable of

contributing rotational W-site order parameters (listed in

Table 3). Each irrep contributes with its most general OPD,

and some irreps contribute more than one order parameter.

Using ISODISTORT, we find that the lowest-symmetry

subgroup that combines all of the rotational W-site order

parameters of all of the listed irreps has space group P1, and a

lattice basis and origin of ðð4; 2; 0Þ; ð�2; 2; 0Þ; ð0; 0; 2ÞÞ and

ð0; 0; 0Þ relative to the hexagonal parent. We will define this to

be our undistorted child structure. We note that this large

supercell also allows rotational W-site contributions at two

non-special k vectors, �ð16 ;
1
6 ; 0Þ and Qð16 ;

1
6 ;

1
2Þ, which are also

included in the analysis.

At this point, we refer to the previous contribution on the

tilting of the WO6 octahedra in HTB by Whittle et al. (2015).

research papers

Acta Cryst. (2018). A74, 408–424 Branton Campbell et al. � An algebraic approach to cooperative rotations 417

Table 3
Irreps of space group P6=mmm that are capable of contributing
rotational W-site order parameters to the HTB child structure (as
defined).

In parentheses next to each irrep, the number of contributed order parameters
and the irrep dimension are listed. In parentheses next to each k vector, the
total number of rotational symmetry modes that it contributes is shown. The
three irreps that produce RUMs are indicated in bold.

�(9) A(9) H(18) K(18) L(27) M(27) �(54) Q(54)

�þ2 ð1; 1Þ Aþ2 ð1; 1Þ H2ð1; 2Þ K2ð1; 2Þ Lþ2 ð1; 3Þ Mþ2 ð1; 3Þ �1ð1; 6Þ Q1ð1; 6Þ
�þ3 ð1; 1Þ Aþ3 ð1; 1Þ H3ð1; 2Þ K3ð1; 2Þ Lþ3 ð1; 3Þ Mþ3 ð1; 3Þ �2ð3; 6Þ Q2ð3; 6Þ
�þ4 ð1; 1Þ Aþ4 ð1; 1Þ H4ð1; 2Þ K4ð1; 2Þ Lþ4 ð1; 3Þ Mþ4 ð1; 3Þ �3ð3; 6Þ Q3ð3; 6Þ
�þ5 ð1; 2Þ Aþ5 ð1; 2Þ H5ð1; 4Þ K5ð1; 4Þ L�1 ð2; 3Þ M�1 ð2; 3Þ �4ð2; 6Þ Q4ð2; 6Þ
�þ6 ð2; 2Þ Aþ6 ð2; 2Þ H6ð2; 4Þ K6ð2; 4Þ L�2 ð2; 3Þ M�2 ð2; 3Þ

L�3 ð1; 3Þ M�3 ð1; 3Þ
L�4 ð1; 3Þ M�4 ð1; 3Þ

6 Note that both of these irreps contributed to the example Pnma perovskite
considered in x2. 7 Such a mismatch would occur only when finite tilts are involved.



Though there were some shortcomings

in the work, many of the arguments they

presented were valid. For example,

Whittle et al. argued that tilting around

the unique sixfold (z) axis was not

possible for three octahedra corner-

linked within a triangular arrangement.

It followed that the only possible tilting

would be around axes in the horizontal

(x–y) planes. And any tilting around

axes in a horizontal layer implied tilting

in the reverse sense around layers above

and below. This in turn implied doubling

of the c cell parameter, so only those

special points of the Brillouin zone with

kz = 1
2, viz. the A, H and L points, would

be of concern. We do not make use of

this argument in the algebraic approach,

but rather will find that the algebraic approach gives results

consistent with this conclusion. We note too that combining all

of the rotational W-site order parameters at just these three

special points leads to the same lowest-symmetry subgroup as

found above.

The supercell volume of the child is 24 times larger than that

of the parent cell. From Table 3, we see that the total number

of rotational symmetry modes available to the child structure

is Nfree ¼ 9þ 9þ 18þ 18þ 54þ 54 ¼ 216, which is as

expected for a triclinic supercell with Npivot ¼ 24� 3 ¼ 72 W-

site SUPAs and three rotational vector components each. The

supercell also has Nshared ¼ 216 O-site SUSAs with two

DCPAs each. This then yields Neqs ¼ 3Nshared � 2 ¼ 1296

equations in 3Nshared þ Nfree ¼ 864 parameters. The matrix M

then has dimensions 1296� 864.

When the system of equations is solved via the calculation

of Mrre, we find that only the Aþ3 , Aþ6 and L�2 irreps are capable

of producing RUMs. These three irreps, respectively, contri-

bute 1, 2� 2 ¼ 4 and 2� 3 ¼ 6 rotational symmetry modes to

the child. But because some modes depend on other modes,

the three irreps, respectively, contribute only 1, 2 and 3 basis

RUMs, so that the total number of basis RUMs is 6.

Rather than analysing the basis RUMs, which are not

especially interesting, we instead focus on the linear combi-

nations of basis RUMs that lead to distinct isotropy subgroups,

which were determined using ISOSUBGROUP. These ten

isotropy subgroups are listed in Table 4, where the six entries

with simple OPDs are indicated in the table; each of the

corresponding simple RUMs is illustrated and described in the

supporting information. Three of these RUMs are also shown

below (Figs. 1–3). For a multi-dimensional irrep, the multi-

parameter OPDs can be viewed as superpositions of these

simple OPDs.
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Figure 1
A representation of one layer of the idealized hexagonal tungsten bronze.
This shows the WO6 octahedra, the O ions at the corners of these
octahedra and the cations M in the hexagonal tunnels. The arrows are
added to indicate the tilt pattern in the structure in P63=mmc (irrep Aþ3 );
they represent the tilt axes as well as the senses and relative magnitudes
of the tilts. The ‘equatorial’ O atoms are marked + or � according to
whether the tilting would set them above or below the z = 0 plane. The
tilts reverse in sense between one layer and the next.

Table 4
The isotropy subgroups of the parent P6=mmm space-group symmetry of HTB at special k vectors.

Each entry includes the irrep, OPD, space-group type, supercell basis and origin relative to the parent cell,
child/parent primitive cell-volume ratio (s), parent/child symmetry-density ratio or index (i), and the active
arms of the star of the k vector. The star of the A point includes only kA ¼ ð0; 0; 1

2Þ, while the star of the L
point contains kL1 ¼ ð

1
2 ; 0; 1

2Þ, kL2 ¼ ð0;
1
2 ;

1
2Þ and kL3 ¼ ð

1
2 ;

1
2 ;

1
2Þ. The entries with simple OPDs are

indicated in bold.

Irrep OPD Space-group type Basis Origin s i k

Aþ3 ðaÞ P63=mmc (#194) ð1; 0; 0Þ; ð0; 1; 0Þ; ð0; 0; 2Þ ð0; 0; 0Þ 2 2 kA

Aþ6 ða; 0Þ Cmcm (#63) ð1; 0; 0Þ; ð1; 2; 0Þ; ð0; 0; 2Þ ð0; 0; 0Þ 2 6 kA

Aþ6 ð0; aÞ Cmcm (#63) ð1; 2; 0Þ; ð�1; 0; 0Þ; ð0; 0; 2Þ ð0; 0; 0Þ 2 6 kA

Aþ6 ða; bÞ P21=m (#11) ð0; 1; 0Þ; ð0; 0; 2Þ; ð1; 0; 0Þ ð0; 0; 0Þ 2 12 kA

L�2 ða; 0; 0Þ Immm (#71) ð2; 1; 0Þ; ð0; 1; 0Þ; ð0; 0; 2Þ ð0; 0; 1
2Þ 2 6 kL1

L�2 ða; 0; aÞ Fmmm (#69) ð2; 0; 0Þ; ð2; 4; 0Þ; ð0; 0; 2Þ ð0; 0; 1
2Þ 4 12 kL1, kL3

L�2 ða; a; aÞ P6=mmm (#191) ð2; 0; 0Þ; ð0; 2; 0Þ; ð0; 0; 2Þ ð0; 0; 1
2Þ 8 8 kL1, kL2, kL3

L�2 ða; 0; bÞ C2=m (#12) ð2; 0; 0Þ; ð0; 0; 2Þ; ð0; 2; 0Þ ð0; 0; 1
2Þ 4 24 kL1, kL3

L�2 ða; b; aÞ Cmmm (#65) ð2; 0; 0Þ; ð2; 4; 0Þ; ð0; 0; 2Þ ð0; 0; 1
2Þ 8 24 kL1, kL2; kL3

L�2 ða; b; cÞ P2=m (#10) ð0; 2; 0Þ; ð0; 0; 2Þ; ð2; 0; 0Þ ð0; 0; 1
2Þ 8 48 kL1, kL2; kL3

Figure 2
An indication of the tilt pattern in Immm, irrep L�2 with OPD (a, 0, 0).
The arrows indicate the tilt pattern as before. Note that some of the WO6

octahedra remain untilted. It can be seen that the octahedra are untilted
and tilted in successive planes of type (010) referred to the parent cell,
and this alternation may render the structure unlikely to occur. We are
not aware of any experimental observations of this structure.



Whittle et al. (2015) searched for cooperative tilt patterns in

HTB by manual inspection of tilted structures deriving from

irreps at the A, H and L points, but this proved a challenging

task. They found the structure in P63=mmc derived from irrep

Aþ3 , with tilts as indicated in Fig. 1, and then noted a literature

report of this tilted structure in Cs0.29WO3 (Prinz et al., 1992),

albeit in a symmetry lowered to space group P6322 by the

displacement of the W atoms from the centres of the WO6

octahedra. They also found the structure in P6=mmm from

irrep L�2 with OPD (a, a, a). However they missed the other

structures, some such as that in Immm from irrep L�2 with

OPD (a, 0, 0), Fig. 2, because they overlooked the possibility

that some octahedra could remain untilted, and others such as

that in Cmcm from irrep Aþ6 with OPD (0, a), Fig. 3, because

they did not envisage structures with tilts around different

axes of the octahedra. On the other hand, they found a pattern

of tilting from irrep R3 on the R-line of symmetry at k = 1
4, 0, 1

4

in space group P6=mmm on a 4� 4� 2 supercell; this was not

found in the present analysis because the cell chosen for the

child structure (as described above) was too small to accom-

modate it. Further study of RUMs at non-special k vectors

could be productive.

Because all of the detected RUMs are pure, a very small

row-reduction tolerance of 10�7 is sufficient for detecting

them. We note that false modes begin to appear in the analysis

at larger tolerances; in this case at tolerances above 10�2:

5. Tetragonal tungsten bronzes

We also examine the RUMs of the corner-sharing WO6 octa-

hedra of the tetragonal tungsten bronzes (TTB) involving only

special k vectors. The structure again comprises layers of

corner-linked WO6 octahedra, but each layer now incorpo-

rates triangular, square and pentagonal arrangements of these

octahedra (Fig. 4). The stoichiometry would be M0.4WO3 if the

pentagonal sites were fully occupied but the tetragonal sites

empty, and M0.6WO3 if both pentagonal and tetragonal sites

were fully occupied; in practice the stoichiometry is variable.8

It is not possible to construct the structure from identical

regular corner-connected octahedra (Whittle et al., 2015), so

no idealized structure can be conceived. Instead we take as

parent the experimentally determined structure of Cs0.43WO3

(Wachsmann & Jacobs, 1995). The parent then has space-

group symmetry P4=mbm (#127) and contains two symmetry-

unique W atoms (W1 on the 2d Wyckoff site and W2 on the 8i

Wyckoff site) which yield a total of ten W atoms in the unit

cell.

The special k vectors of the first Brillouin zone of the parent

lattice are �ð0; 0; 0Þ; Mð12 ;
1
2 ; 0Þ, Zð0; 0; 1

2Þ, Xð0; 1
2 ; 0Þ, Rð12 ; 0; 1

2Þ

and Að12 ;
1
2 ;

1
2Þ. All of the 32 irreps defined at these k vectors

are capable of contributing rotational W-site order parameters

(listed in Table 5). Each irrep contributes with its most general

OPD, and some irreps contribute more than one order para-

meter. Using ISODISTORT, we find that the lowest-symmetry

subgroup that combines all of the rotational W-site order

parameters of all of the irreps of all of these special k vectors

has space group P1, and a lattice basis and origin of ((2, 0, 0),

(0, 2, 0), (0, 0, 2)) and (0, 0, 0) relative to the tetragonal parent.

We will define this to be our undistorted child structure.

Again, it could be argued that only those special points of

the Brillouin zone with kz = 1
2, viz. the Z, A and R points, are of

concern. But again, one does not need to make use of this

argument in the algebraic approach, but rather will see this
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Figure 3
An indication of the tilt pattern in Cmcm, irrep Aþ6 with OPD (0, a). The
arrows indicate the tilt pattern as before. Notice that the tilts are variously
around the fourfold and twofold axes of the WO6 octahedra, and that the
magnitudes of the tilts are inversely proportional to the perpendicular
distances from passenger O atoms to the tilt axes.

Figure 4
A representation of one layer of a tetragonal tungsten bronze. Notice that
the corner-linked WO6 octahedra show connections in triangular, square
and pentagonal arrangements. The cations M can reside in the pentagonal
and square tunnels. The arrows are added to indicate the tilt pattern in
the structure in Pnma, irrep Zþ5 with OPD (a, a).

8 If the triangular sites are also occupied, we have a ‘stuffed’ tetragonal
tungsten bronze.



result confirmed as the algebraic approach yields RUMs at

these special points only.

The supercell volume of the child is eight times larger than

that of the parent cell. From Table 5, we see that the total

number of rotational symmetry modes available to the child

structure is Nfree = 30 + 30 + 30 + 60 + 60 + 30 = 240, which is as

expected for a triclinic supercell with Npivot = (2 + 8) � 8 = 80

W-site SUPAs with three rotational vector components each.

The supercell also has Nshared = 240 O-site SUSAs with two

DCPAs each. This then yields Neqs = 3Nshared � 2 = 1440

equations in 3Nshared + Nfree = 960 parameters. The matrix M

then has dimensions 1440 � 960.

When the system of equations is solved via the calculation

of Mrre, we find that only Zþ5 and A�5 irreps are capable of

producing pure RUMs. We further find that the R1 irrep

contributes quasi-RUMs requiring only small octahedral

distortions, which we include in all subsequent discussion;

their existence reflects the inherent complexity of the octa-

hedral network in the parent structure.

Remarkably, in each case that an irrep contributes multiple

order parameters, only one order parameter from that irrep

turns out to be independent. Thus, though these three irreps,

respectively, contribute a total of 2 � 6 + 2 � 6 + 4 � 10 = 64

rotational symmetry modes to the child, they, respectively,

contribute only 2 + 2 + 4 = 8 basis RUMs.

Once again, rather than analysing the basis RUMs, we

instead focus on the linear combinations of basis RUMs that

lead to distinct isotropy subgroups, which were determined

using ISOSUBGROUP. These 15 isotropy subgroups are

listed in Table 6, where the eight entries with simple OPDs are

indicated by bold cells; each of the corresponding simple

RUMs is illustrated and described in the supporting infor-

mation.

Whittle et al. (2015) conducted a manual search for coop-

erative tilt patterns in TTB deriving from irreps at Z, A and R

points, but with limited success. The only acceptable tilt

pattern they identified at special k vectors was that in space

group I4=m corresponding to irrep A�5 with OPD ða; 0Þ, as per

the entry in Table 6. Smirnov & Saint-Grégoire (2014) enjoyed

greater success using a lattice dynamics approach to the

problem – they found all the structures with simple OPDs

(bold cells in Table 6) apart from that in Fmmm (#69) and that

in I4=m (#87) on a 2� 2� 2 cell.

Whittle et al. (2015) found another acceptable tilt pattern at

k = ð14 ;
1
4 ;

1
2Þ, on the S-line of symmetry: irrep S3, OPD

ð0; a; 0; 0Þ, space group Cmcm (#63), basis (0, 0, 2), (2, 2, 0),

(�1, 1, 0), origin ð12 ;
1
2 ;

1
2Þ. This tilt pattern does not appear in

the present analysis because the child cell used here is too

small to have ð14 ;
1
4 ;

1
2Þ in its reciprocal lattice. An additional

doubling of the unit cell in the parent a–b plane would be

sufficient to include this k vector. As mentioned earlier for

HTB, it may be productive to search for additional TTB

RUMs at non-special k vectors.

For the algebraic approach presented in this section we took

the experimentally determined structure of Cs0.43WO3

(Wachsmann & Jacobs, 1995) as the parent structure. Similar

structures have been reported for the tungsten bronzes by a

number of authors (Magnéli, 1949; Kihlborg & Klug, 1973;

Takusagawa & Jacobson, 1976; Debnath et al., 2009). Since our

interest here is in octahedral tilting, we focus on studies

reporting a doubling of the c parameter (see the argument

concerning octahedra linked around a triangle, or the entries

in Table 6). Takusagawa & Jacobson (1976) in their study of

Nax-TTBs (x = 0.33, 0.48) reported that the O ions were

disordered, attributed this to WO6 octahedral tilting, and

suggested that the ordered structure might be properly

described on a 21=2a� 21=2a� 2c cell. A similar superstructure

had been observed earlier (Steadman, 1972) in the Snx-TTBs

at x = 0.11 and x = 0.25. However in neither case was a space

group suggested. This 21=2a� 21=2a� 2c superstructure was

reported again in a more detailed study of Sn0.30-TTB by

Goreaud et al. (1980), who gave the space group as I4/m.
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Table 5
Irreps of space group P4/mbm that are capable of contributing rotational
W-site order parameters to the TTB child structure (as defined).

In parentheses next to each irrep, the number of contributed order parameters
and the irrep dimension are listed. In parentheses next to each k vector, the
total number of rotational symmetry modes that it contributes is listed. The
three irreps that produce RUMs are indicated in bold.

�(30) M(30) Z(30) A(30)

�þ1 ð1; 1Þ Mþ1 Mþ4 ð2; 2Þ Zþ1 ð1; 1Þ Aþ1 Aþ4 ð2; 2Þ
�þ2 ð2; 1Þ Mþ2 Mþ3 ð2; 2Þ Zþ2 ð2; 1Þ Aþ2 Aþ3 ð2; 2Þ
�þ3 ð2; 1Þ Mþ5 ð2; 2Þ Zþ3 ð2; 1Þ Aþ5 ð2; 2Þ
�þ4 ð1; 1Þ M�1 M�4 ð2; 2Þ Zþ4 ð1; 1Þ A�1 A�4 ð2; 2Þ
�þ5 ð6; 2Þ M�2 M�3 ð1; 2Þ Zþ5 ð6; 2Þ A�2 A�3 ð1; 2Þ
��1 ð2; 1Þ M�5 ð6; 2Þ Z�1 ð2; 1Þ A�5 ð6; 2Þ
��2 ð2; 1Þ Z�2 ð2; 1Þ
��3 ð2; 1Þ Xð60Þ Z�3 ð2; 1Þ Rð60Þ
��4 ð2; 1Þ X1ð10; 4Þ Z�4 ð2; 1Þ R1ð10; 4Þ
��5 ð2; 2Þ X2ð5; 4Þ Z�5 ð2; 2Þ R2ð5; 4Þ

Figure 5
An indication of the tilt pattern in I4/m, irrep A�5 with OPD (a, 0). The
arrows indicate the tilt pattern as before.



These authors presented a model for the octahedral tilting in

the superstructure, inferred mainly from the disorder found in

the substructure, but entirely consistent with what we find in

this work (Table 6, Fig. 5). Superstructures have also been

reported in studies of Pbx-TTBs (Triantafyllou et al., 1997;

Haydon & Jefferson, 2002). These superstructures have not

been directly discernible in X-ray diffraction data but have

been observed using electron diffraction techniques.

Triantafyllou et al. (1997) reported evidence for a modulated

structure in Pb0.26WO3, based on the 21=2a� 21=2a� 2c

superstructure in I4/m. They depict a structure showing tilting

of the WO6 octahedra centred on the Wyckoff d sites in the

manner of Fig. 5, but, strangely, they do not show tilting of the

other octahedra. Haydon & Jefferson (2002) reported for

Pb0.175WO3 a larger supercell (see discussion in Whittle et al.,

2015); interestingly, they found this supercell to be largely

independent of Pb content, which was taken to indicate it

arises from a distortion of the framework of corner-linked

octahedra rather than ordering of the Pb ions within the

pentagonal tunnels.

There has been considerable interest in non-

centrosymmetric versions of the TTB structures as are found,

for example, among the niobates and tantalates, for their

potential as piezoelectrics, ferroelectrics and in optical device

applications (Ainger et al., 1970; Neurgaonkar et al., 1992; Chi

et al., 2004). First, we note that the parent TTB in P4=mbm can

be polarized along its z axis due to the displacement of ions

along the same axis under the action of irrep ��3 , or it can be

polarized in the x–y plane due to displacement of ions in this

plane under the action of irrep ��5 . The effect of ��3 on the

parent in P4=mbm is to lower its symmetry to (tetragonal)

P4bm (#100), while the effect of ��5 is to lower the symmetry

to orthorhombic in space groups Pmc21 (#26), Amm2 (#38), or

to monoclinic in Pm (#6). These results can be obtained using

ISOSUBGROUP, which also shows that the A-centred

structure is described on a

c� 21=2a� 21=2a cell. As before, our

interest is not so much in these basic

structures but rather in any variants

showing a doubling of the c parameter

that might be attributed to octahedral

tilting. Doubling of the c parameter was

reported in a number of early studies

(Francombe & Lewis, 1958; Subbarao

et al., 1960; Bobb et al., 1969; Jamieson

et al., 1969); Jamieson et al. (1968)

found evidence for oxygen disorder,

possibly indicative of unresolved octa-

hedral tilting, while in a study of

Ba4.13Na1.74Nb10O30 (BNN) the same

authors (Jamieson et al., 1969) showed

in their Fig. 3 how distorted (sheared)

octahedra could stack to cause such a

doubling. It is our view that octahedral

tilting would be a more likely occur-

rence [Labbé et al. (1989) have

expressed a similar opinion].9 There are

reports in the literature of structures with polarization along

the z axis (irrep ��3 ) showing ‘weak’ orthorhombic distortion;

in some instances, the orthorhombic distortion sets in after

(i.e. at lower temperature than) the paraelectric to ferro-

electric transition. This weak orthorhombic distortion is

almost invariably accompanied by doubling of the c parameter

(Jamieson et al., 1969; Neurgaonkar et al., 1992) and it is our

contention here that such distortion is simply the result of

octahedral tilting. As a specific example, Whittle et al. (2018)

carried out a study of Sr3TiNb4O15 (STN) and found the

structure to be in space group Pna21 (#33) on an a� a� 2c

cell. This structure evidently shows (weak) orthorhombic

distortion and a doubling of the c parameter; according to

ISOSUBGROUP, it can arise from a combination of z-axis

displacements associated with irrep ��3 and octahedral tilting

associated with irrep Zþ5 . Other, larger, superstructures have

been mentioned elsewhere (Whittle et al., 2015).

For the A�5 and Zþ5 RUMs, which were pure, an exceedingly

small row-reduction tolerance of 10�15 was sufficient for

detection. And, as in the case of the HTB analysis, false modes

began to arise in the TTB analysis at tolerances above 10�2.

The quasi-RUM R1 modes, however, were only detected when

the tolerance was raised to 0.10, by which point the false

modes had become excessive. To improve the sensitivity to

quasi-RUMs, without introducing false modes, we employed

alternative row-reduction tools and strategies, which will be

described in a future work.
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Table 6
The isotropy subgroups of the parent P4/mbm space-group symmetry of TTB at special k vectors.

Each entry includes the irrep, OPD, space-group type, supercell basis and origin relative to the parent cell,
child/parent primitive cell-volume ratio (s), parent/child symmetry-density ratio (i) and the active arms of
the star of the k vector. The star of the A point includes only kA ¼ ð

1
2 ;

1
2 ;

1
2Þ and the star of the Z point

includes only kZ ¼ ð0; 0; 1
2Þ, while the star of the R point contains both kR1 ¼ ð

1
2 ; 0; 1

2Þ and kR2 ¼ ð0;
1
2 ;

1
2Þ.

The entries with simple OPDs are indicated in bold.

Irrep OPD Space-group type Basis Origin s i k

Zþ5 ða; 0Þ Cmcm (#63) (1, 1, 0), (�1, 1, 0), (0, 0, 2) ð0; 1
2 ; 0Þ 2 4 kA

Zþ5 ða; aÞ Pnma (#62) (1, 0, 0), (0, 0, 2), (0, �1, 0) (0, 0, 0) 2 4 kA

Zþ5 ða; bÞ P21=m (#11) (0, 1, 0), (0, 0, 2), (1, 0, 0) (0, 0, 0) 2 8 kA

A�5 ða; 0Þ I4=m (#87) (1, 1, 0), (�1, 1, 0), (0, 0, 2) ð0; 0; 1
2Þ 2 4 kZ

A�5 ða; aÞ Imma (#74) (0, 0, 2), (1, �1, 0), (1, 1, 0) ð0; 0; 1
2Þ 2 4 kZ

A�5 ða; bÞ C2=m (#12) (0, 2, 0), (0, 0, 2), (1, �1, 0) (0, 0, 1
2) 2 8 kZ

R1 ð0; 0; a;�aÞ C2=m (#12) (2, 0, 0), (0, 0, 2), (0, �1, 0) ð12 ; 0; 1
2Þ 2 8 kR1

R1 ða;�a;�a; aÞ Fmmm (#69) (2, 2, 0), (�2, 2, 0), (0, 0, 2) ð12 ; 0; 1
2Þ 4 8 kR1, kR2

R1 ð0; 0; a; 0Þ Cmc21 (#36) (0, 0, 2), (2, 0, 0), (0, 1, 0) ð34 ; 0; 1
2Þ 2 8 kR1

R1 ða; a;�a; aÞ I4=m (#87) (2, 0, 0), (0, 2, 0), (0, 0, 2) ð12 ;
1
2 ;

1
2Þ 4 8 kR1, kR2

R1 ða;�a; b;�bÞ C2=m (#12) (�2, 2, 0), (0, 0, 2), (2, 0, 0) (1
2, 0, 1

2) 4 16 kR1, kR2

R1 ð0; 0; a; bÞ Cm (#8) (2, 0, 0), (0, 0, 2), (0, �1, 0) (0, 0, 1
2) 2 16 kR1

R1 ða; a; b;�bÞ C2=m (#12) (�2, 2, 0), (0, 0, 2), (2, 0, 0) (1
2,

1
2,

1
2) 4 16 kR1; kR2

R1 ða; b;�a;�bÞ Fmm2 (#42) (0, 0, 2), (2, 2, 0), (�2, 2, 0) (0, 1
2,

1
2) 4 16 kR1; kR2

R1 ða; b; c; dÞ Cm (#8) (�2, 2, 0), (0, 0, 2), (2, 0, 0) (0, 0, 1
2) 4 32 kR1; kR2

9 Jamieson et al. (1969) indicated that the BNN structure was based on a
21=2a� 21=2a� c subcell in space group Cmm2. Such a subcell would be found
in a structure in Cmc21 on a 21=2a� 21=2a� 2c cell, which in turn could be
obtained by introducing z-axis polarization (��3 ) into the Cmcm structure
shown in Table 6; the same subcell could equally be found in a structure in
Ima2 on a 21=2a� 21=2a� 2c cell obtainable by incorporating z-axis
polarization into the Imma structure of Table 6 (all checked using
ISOSUBGROUP). There are reports of Ima2 structures in the literature
(Levin et al., 2006; Stennett et al., 2007).



6. Discussion and conclusions

Two key insights enabled the development of this algebraic

method for detecting cooperative rotational rigid units

(RUMs) in networks of interconnected rigid units. The first

was the realization that the geometric equations of shared-

atom motion [equation (2)] in the small rotation-angle limit

would be linear, which would enable the construction of a

homogeneous linear system of equations. The second key was

the separate application of equation (2) to each of the pivot

atoms attached to a given shared atom; any incompatibilities

amongst these pivot equations are precisely the geometric

constraints that cause some modes to be rejected as unco-

operative. Another very important but non-critical facet of the

new algorithm is the use of rotational (and displacive)

symmetry modes to parameterize the child structure’s tilt

system; this naturally groups the basis RUMs of a system

according to wavevector and RUM-capable irrep.

Because each RUM is a solution of a homogeneous system

of equations, the superposition of two or more RUMs is also a

RUM. In fact, the set of all possible RUMs of a given tilt

system comprise a vector space, where the subspace associated

with a single instance of a given irrep possesses one basis

RUM for each component of the OPD. For a given parent

structure and a given multi-dimensional irrep of the parent

symmetry, if any OPD component of the irrep is capable of

contributing a RUM, then every linear combination of OPD

components of the irrep is also capable of contributing a

RUM. This was a point not appreciated in past RUM-search

efforts on the tungsten bronzes, which excluded some of the

OPDs of a RUM-capable irrep. And in general, any RUM can

be uniquely decomposed into contributions from the OPD

components of the various instances of the RUM-capable

irreps, which contributions can be viewed as distinct basis

RUMs.

It is also worth noting that if an irrep cannot contribute

RUMs to the child structure on its own, it cannot contribute

RUMs in conjunction with other irreps; one need not worry

that two or more RUM-incapable irreps might somehow work

together to produce a RUM. When searching for quasi-RUMs

in the perovskite system at non-special wavevectors, with a

substantially large row-reduction tolerance, we occasionally

saw such modes arise in our output, though in each instance

they proved to be spurious.

We anticipate that the present algebraic RUM-search

algorithm will eventually be made publicly available as part of

the ISOTROPY software suite, and that it will complement

existing RUM-search tools like CRUSH (Hammonds et al.,

1994), which simulate classical ball-spring vibrational spectra.

In our view, the algebraic approach is the zero-frequency limit

of the vibrational spectra approach, and should yield identical

results for pure modes, at least in principle. Quasi-RUM

modes, which should have non-zero vibration frequencies, can

still be detected using the algebraic approach via a sufficiently

large row-reduction tolerance. The new approach can simul-

taneously treat all of the wavevectors and rotational order

parameters consistent with a given child subgroup, though one

can also choose to treat a single wavevector individually by

choosing the child sublattice specifically to accommodate this

wavevector and simply deleting the columns of matrix M

corresponding to any other wavevectors compatible with the

child sublattice prior to row reduction.

In this work we have defined a ‘pure’ mode as an exact

solution of the linearized (i.e. small-angle) geometric

constraint problem. There has been some interest in the

literature in whether rigid units can be undistorted at larger

rotation angles if lattice parameter relaxation is allowed;

among the 15 perovskite structures given by Howard & Stokes

(1998), there is only one structure in which undistorted octa-

hedra cannot be accommodated. Indeed, in their structure

prediction package for perovskites, SPuDS, Lufaso & Wood-

ward (2001) make the assumption that octahedra remain

undistorted at larger rotation angles. It may be that in other

systems, such as the tungsten bronzes, RUMs that remain

cooperative at large rotation angles are relatively rare. A

valuable extension of the present work would be a method of

detecting whether a given small-angle pure mode is also a

large-angle pure mode.

In summary, we have developed a new approach to the

analysis of cooperative rotations in networks of inter-

connected rigid units wherein the geometric constraints of

connectedness reduce, in the small rotation-angle limit, to a

homogeneous linear system of equations. We further para-

meterize the cooperative rotations in terms of symmetry

modes associated with the irreducible representations (irreps)

of the parent space group. For a given parent structure, this

algebraic approach yields a complete list of the geometrically

possible cooperative-rotational rigid-unit modes (RUMs),

from which potential structures can be deduced. The algebraic

approach is generally applicable, even when the inter-

connected subnetwork is of low dimensionality, when the

number of pivots connected to a given shared atom is greater

than two, or when there are multiple types of rigid units. It is

noted however that some geometrically possible RUMs may

not occur in real materials (see for example the discussion in

the final paragraph of x3). The algebraic approach is illustrated

by application to perovskites, to quartz, and to the hexagonal

and tetragonal tungsten bronzes; it gives results for perovs-

kites in complete agreement with the literature (Howard &

Stokes, 1998); for quartz it reveals an interesting connection

between the rotational and displacive modes of the well

known � to � transition; and for the tungsten bronzes it gives

good agreement with structures already reported in the

literature (Smirnov & Saint-Grégoire, 2014; Whittle et al.,

2015), and importantly, it reveals additional structures that

were previously overlooked.

APPENDIX A
Coordinate systems for rigid-unit rotation vectors

In this work, we have used lattice units for all atomic coor-

dinates, atomic displacements and pivot-atom rotations. The

crystal-axis coordinate system is the most commonly used
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system for presenting magnetic moment vectors in crystals.

Because rotational and magnetic moments in crystals have

strong physical and mathematical analogies, it is appropriate

that we also explain how to use crystal-axis coordinates to

describe rotation vectors.

Let B be the matrix whose columns are the Cartesian

coordinates of the basis vectors of the unit cell, and let L be

the diagonal matrix whose diagonal elements are the lengths

of the three cell edges. Both B and L have Å units. For the case

of orthogonal crystal axes, B is diagonal so that B ¼ L.

Rotation-vector components (rlatt) in the crystal-axis coor-

dinate system are related to those of the Cartesian (rcart) and

lattice coordinate (rcryst) systems as follows below. Note that

atomic displacements transform using the same equations:

rlatt ¼ B�1
� rcart ¼ L�1

� rcryst

rcart ¼ B � rlatt ¼ B � L�1 � rcryst

rcryst ¼ L � rlatt ¼ L � B�1
� rcart:

All three systems have advantages and disadvantages.

Cartesian vector components always have the physically

expected units. Cartesian basis vectors are orthonormal,

though they do not all align with the unit-cell basis vectors

when non-90� angles are present. Lattice coordinates basis

vectors always align with the unit-cell basis vectors. Lattice

coordinate vector components are conveniently unitless for

atomic coordinates, but have unfamiliar units for other

quantities (e.g. radians/Å for rotations and mB/Å for magnetic

moments); they also suffer from a dependence on the cell

parameters of the crystal, even when the physical vector (e.g.

rotation or displacement) itself is constant. Crystal-axis coor-

dinates are a partial compromise between the Cartesian and

lattice coordinate systems. Crystal-axis basis vectors always

align with the unit-cell basis vectors. Crystal-axis vector

components always have the physically expected units, and are

not dependent on the cell-edge parameters of the crystal; but

they do depend on the unit-cell angles, which can be an

annoyance.

For the perovskite example, the actual rotational symmetry-

mode amplitudes of the Rþ4 , Xþ5 and Mþ3 modes are approxi-

mately �0.0700, 0 and 0.0572 rad, respectively, which are also

the components of vector A. The vector S can then be

calculated as

S ¼ TA �A ¼

�0:08839 0 0

0 0 0:0625

0 0:08839 0

0
B@

1
CA
�0:0700

0

0:0572

0
B@

1
CA ¼

0:00619

0:00358

0

0
B@

1
CA:

In this example, S contains all three rotational components

of a single Mn pivot atom, so that it is essentially the same as

rlatt, expressed in radians/Å units. Because the child cell is a

21=2 � 2� 21=2 supercell of a 4 Å cubic parent cell, the matrix

B has 4(21/2) Å, 8 Å and 4(21/2) Å on the diagonal. And

because the unit-cell axes are all orthogonal, B = L, so that rcart

= rcryst = B�rlatt [4(21/2)](0.00619, 0.00358, 0) = (0.0350, 0.0286,

0), expressed in radian units. The magnitude of this vector is

then (0.03502 + 0.02862)1/2 = 0.0452 radians or 2.59�.

References

Ainger, F. W., Bickley, W. P. & Smith, G. V. (1970). Proc. Br. Ceram.
Soc. 18, 221–237.

Aleksandrov, K. S. (1976). Ferroelectrics, 14, 801–805.
Benedek, N. A., Rondinelli, J. M., Djani, H., Ghosez, P. & Lightfoot,

P. (2015). Dalton Trans. 44, 10543–10558.
Bobb, L. C., Lefkowitz, I. & Muldawer, L. (1969). J. Appl. Cryst. 2,

189–190.
Bradley, C. J. & Cracknell, A. P. (1972). The Mathematical Theory of

Symmetry in Solids. Oxford: Clarendon.
Campbell, B. J., Stokes, H. T., Tanner, D. E. & Hatch, D. M. (2006). J.

Appl. Cryst. 39, 607–614.
Carpenter, M. A. & Salje, E. K. H. (1998). Eur. J. Mineral. 10, 693–

812.
Carpenter, M. A., Salje, E. K. H. & Graeme-Barber, A. (1998). Eur. J.

Mineral. 10, 621–691.
Chi, E. O., Gandini, A., Ok, K. M., Zhang, L. & Halasyamani, P. S.

(2004). Chem. Mater. 16, 3616–3622.
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